REACTIONS OF ISOTHIOCYANATES AND ISOCYANATES WITH SOME SILVLATED NITROGEN-CONTAINING NUCLEOPHILES

Jozef GONDA and Zuzana ANTALOVÁ

Department of Organic Chemistry, Faculty of Natural Sciences, P. J. Šafárik University, 041 67 Košice

> Received June 6, 1990 Accepted August 30, 1990

Aryl isothiocyanates and arylisocyanates react with N,O-bis(trimethylsilyl)acetamide to give N-methyl-N'-arylthioureas and ureas. Also nucleophilic additions of other aprotic nucleophiles (e.g. N-trimethylsilylimidazole, N-trimethylsilylipieridine and N-trimethylsilylmorpholine) to the N=C=X (X = O, S) group were investigated.

Additions of protic nucleophiles and anions to the N=C=X (X = O, S) group of isocyanates and isothiocyanates are well known¹. Nevertheless, only few examples of additions with aprotic nucleophiles have been reported, as e.g. those of halogens or acid anhydrides to isothiocyanates; the products are, however, unstable and undergo further transformations^{2.3}.

This contribution is aimed to examine additions of silylated aprotic nitrogencontaining nucleophiles to isothiocyanates and isocyanates. An analogous reaction was investigated by Japanese authors^{4,5} who found that the strongly basic hexamethyldisilylmethylamine reacted with phenyl isothiocyanates and isocyanates at 150°C to afford N-aryl-N'-methylcarbodiimides. Hexamethyldisilazane adds to aryl isocyanates to form N-aryl-N,N'-bis(trimethylsilyl)ureas; surprisingly, in contrast to addition of dialkylamines, rupture of the Si—N bond took place⁶. Therefore, we investigated this type of reaction using aprotic silylated nitrogen-containing nucleophiles. Thus, phenyl isothiocyanate (*Ia*) and the commercially available N,O-bis-(trimethylsilyl)acetamide (*II*) gave N-acetyl-N'-phenylthiourea (*IIIa*) in a quantitative yield by heating the components to $70-80^{\circ}$ C (Scheme 1). The mixture was then methanolysed after standing for 24 h. The same conditions were also applied for preparation of substituted thioureas *IIIa-IIIm* in 72-99% yield (Scheme 1, Table I).

The IR spectra of compounds IIIa - IIIm showed absorption bands of NH (3 360-3 425 cm⁻¹) and CO (1 640-1 690 cm⁻¹) groups; in ¹H NMR spectra signals of the CH₃CO and NH groups appeared at $\delta 2.05 - 2.53$ and above 9.05, respectively (Table II). The structure of final products was verified by the mass

spectrum of N-(2,4-dichlorophenyl)-N'-acetylthiourea (IIIh). Scheme 2 illustrates the fundamental fragmentation pattern.

-N=C=X + CH	N-SI(CH ₃) ₃	$= R - N = C - N = C - CH_2 -$
	0Si(CH_)	
1, IV	11	
+CH ₃ OH CH ₃ OSi(CH ₃) ₃ R-N	X O III III III	
	ı mm,va ve	
formulae (and)	X C	
	:	_
R	R	R
a C ₆ H ₅	$f = 4 - CH_3C_6H_4$	k 3−(CH ₃)₂NC ₆ H ₄
6 4-FC ₆ Η ₄	$g = 3 - CIC_6H_4$	$I = C_6 H_5 CH = CHCO$
	5 2 4 - CL C H	- N-nanhthul
$c = 4 - CIC_6H_4$	$n - 2_1 + - C_2 C_6 n_3$	m w-naphtnyt
$c = 4 - \operatorname{ClC}_6 \operatorname{H}_4$ $d = 4 - \operatorname{BrC}_6 \operatorname{H}_4$	$i = 2 + 4 = Cl_2 C_6 H_3$ $i = 4 - CH_3 COC_6 H_4$	m ∝-naphtnyt
$c = 4 - CIC_6H_4$ $d = 4 - BrC_6H_4$ $e = 4 - NO_2C_6H_4$	$i = 2 \cdot 4 - CH_2 COC_6 H_2$ $i = 4 - CH_3 COC_6 H_2$ $j = C_6 H_5 CO$	
$c = 4 - ClC_6H_4$ $d = 4 - BrC_6H_4$ $e = 4 - NO_2C_6H_4$ in formulae /V and N	$\begin{array}{c} & & 2 \\ & & & - C I_2 C_6 I_3 \\ & & 4 - C H_3 CO C_6 H_2 \\ & & & C_6 H_5 CO \end{array}$	m w-napriny(
$c = 4 - ClC_6H_4$ $d = 4 - BrC_6H_4$ $e = 4 - NO_2C_6H_4$ $r \text{ formulae } IV \text{ and } N$ R	$7 = 2 \cdot \mathbf{A} - C \cdot \mathbf{C}_{2} \cdot \mathbf{C}_{6} \cdot \mathbf{H}_{3}$ $7 = 2 \cdot \mathbf{C}_{6} \cdot \mathbf{C}_{6} \cdot \mathbf{H}_{5} \cdot \mathbf{C}_{6}$ $7 = 0$ R	m w-napriny(
$c = 4 - ClC_6H_4$ $d = 4 - BrC_6H_4$ $e = 4 - NO_2C_6H_4$ $formulae /V and N$ R $a = C_6H_5$	$\frac{7}{6} = \frac{2}{4} + \frac{2}{C_{12}C_{6}} + \frac{1}{3}$ $\frac{7}{6} + \frac{1}{5}CO$	
$c = 4 - ClC_6H_4$ $d = 4 - BrC_6H_4$ $e = 4 - NO_2C_6H_4$ $formulae /V and N$ R $a = C_6H_5$ $b = 4 - ClC_6H_4$	$\frac{7}{4} = CI_2C_6I_3$ $\frac{7}{4} = CI_3COC_6H_4$ $\frac{7}{4} = C_6H_5CO$ $\frac{1}{4} = C_6H_3OC_6H_4$ $\frac{1}{4} = C_6H_5CH_2C(CH_3) = C(CH_3) = C(CH_3)$	
$c = 4 - CIC_{6}H_{4}$ $d = 4 - BrC_{6}H_{4}$ $e = 4 - NO_{2}C_{6}H_{4}$ formulae // and N $\frac{R}{a = C_{6}H_{5}}$ $b = 4 - CIC_{6}H_{4}$ $c = 4 - BrC_{6}H_{4}$	$ \frac{1}{4} - CH_{3}COC_{6}H_{4} - CH_{3}COC_{6}H_{4} - CH_{3}COC_{6}H_{4} - CH_{3}OC_{6}H_{4} - CH_{3}OC_{6}H_{4} - CH_{3}OC_{6}H_{4} - CC_{6}H_{5}CH = C(CH_{3}) - CC_{6}H_{5}CH = CCC_{6}H_{5}CH = CC_{6}H_{5}CH = C$	

N-Aryl-N acetylureas Va - Ve were obtained in an analogous way by treatment of isocyanates IVa - IVe with N,O-bis(trimethylsilyl)acetamide (II). More reactive isocyanates reacted even at room temperature and in higher yields (Scheme 1, Table III). The IR and ¹H NMR spectra of compounds V corroborated the presence of CH₃CO and NH groups (1 680 cm⁻¹, $\delta 2.28 - 2.53$ and 1 680 cm⁻¹ and above δ 10.58, respectively, Table IV).

For the reaction under study we propose two pathways (Scheme 3); path A supposes a simple decomposition of the Si—N bond under formation of an addition product, which underwent methanolysis to furnish the final product. A more complicated path B supposes a 2 + 2 cycloaddition followed by rupture of the four-membered ring and methanolysis. To verify one of the proposed mechanisms we prepared N-trimethylsilylimidazole, N-trimethylsilylmorpholine and N-trimethyl-

$$IMS = (CH_3)_3Si , BSA = CH_3 - C < O - Si(CH_3)_3 , X = O, S$$

SCHEME 3

In formulae VII a - VII e :

silylpiperidine⁷, substances unable to enter cycloaddition according to path B and found that aryl isothiocyanates do not react with N-trimethylsilylimidazole, whilst isocyanates afforded 1-(arylaminocarbonyl)imidazoles VIIa - VIIe in 57 - 78% yield (Scheme 4, Tables V and VI). Nevertheless, the corresponding addition products were obtained on reaction of N-trimethylsilylmorpholine or N-trimethylsilylpiperidine with aryl isocyanates or isothiocyanates (Scheme 4, Tables VII and VIII).

In formulae Xa, Xb, Xla, Xlb, XII:

$a O N - C_6H_5 O \qquad a C_1$ $b O N - 4 - CIC_6H_4 O \qquad b 4 - CC_6H_5 O \qquad c 4 - E_6$ $c O N - C_6H_5 O \qquad c 4 - E_6$ $d 4 - N c 4 - CIC_6H_4 O \qquad c 4 - CC_6$ $c O N - C_6H_5 S S S S S S S S S $		<u></u>	<u>R</u> ²	Х	R ¹
$b O = \mathbf{N} - 4 - \operatorname{CIC}_6 \mathbf{H}_4 O \qquad b 4 - \mathbf{C}_6 \mathbf{H}_5 O \qquad c 4 - \mathbf{E}_6 \mathbf{H}_5 O \qquad c 4 - \mathbf{E}_6 \mathbf{H}_5 O \qquad c 4 - \mathbf{E}_6 \mathbf{H}_6 \mathbf{H}_$	а	0_N-	C ₆ H ₅	0	a C ₆ H ₅
$c \qquad N - C_6H_5 \qquad 0 \qquad d 4 - N - d C_6H_5 \qquad 0 \qquad d 4 - N - d C_6H_4 \qquad 0 \qquad e 4 - C = 0$	b	0_N-	4 - CIC ₆ H ₄	0	6 4-CIC
$d = 0$ $d = 0$ $N - 4 - CIC_6H_4 = 0$ $e = 4 - C$ $e = 0$ $N - C_6H_5 = 5$	с	(_N-	C _e H _e	0	c 4 − BrC
$d \left(N - 4 - CIC_6H_4 \right) = 4 - C$ $e \left(N - C_6H_5 \right) = 5$		Ä	-65	J. J	d 4 - NO ₂ 0
	d	(N	4 - CIC ₆ H ₄	0	e 4 - CH ₃ (
	e	0_N-	C ₆ H ₅	S	

SCHEME 4

It could be, therefore, concluded that these silylated nitrogen-containing nucleophiles underwent nucleophilic additions to isothiocyanates and isocyanates analogously as their not silylated counterparts. In some cases the silylated nucleophiles were more reactive, e.g. N,O-bis(trimethylsilyl)acetamide (*II*) reacted with isothiocyanates even at a gently elevated temperature, whilst acetamide did not. This procedure has constituted a new approach to N-acetyl-N'-arylureas and thioureas. Experiments with N-trimethylsilylimidazole, N-trimethylsilylmorpholine and N-trimethylsilylpiperidine indicated that their reactivity towards isothiocyanates and isocyanates corresponded to the stability of the Si—N bond in line with⁶ thus favouring our conception expressed by path A.

EXPERIMENTAL

The IR spectra of chloroform solutions or KBr pellets were measured with a Specord 75 (Zeiss, Jena) spectrophotometer in the 880-4000 cm⁻¹ range, the ¹H NMR spectra of deuterochloroform, deuterochloroform-hexadeuterodimethyl sulfoxide or hexadeuterodimethyl sulfoxide

688

Reactions of Isothiocyanates and Isocyanates

solutions containing tetramethylsilane as an internal reference or hexamethyldisiloxane as an external standard were recorded with a Tesla BS 487 A apparatus operating at 80 MHz. The mass spectra were taken with an AEI MS 902 S instrument at 70 eV ionizing electron energy. The reaction course and purity of products were monitored by thin-layer chromatography on Silufol 254 (Kavalier, Czechoslovakia) sheets.

Compound	Formula	Yield, %	Ca	Calculated/Found		
	M.w.	M.p., °C =	% C	% Н	% N	
IIIa	C ₉ H ₁₀ N ₂ OS 194·2	99 173—175	55·65 55·63	5·18 5·22	14·43 14·40	
IIIb	C ₉ H ₉ FN ₂ OS 212·2	93 198–200	50·93 50·93	4·22 4·22	13·20 13·34	
IIIc	C ₉ H ₉ ClN ₂ OS 228·7	98 185—188	47·26 47·34	3·94 4·01	12·25 12·35	
IIId	C ₉ H ₉ BrN ₂ OS 273·1	87 117—118	39·57 39·66	3·32 3·29	10·25 10·33	
IIIe	C ₉ H ₉ N ₃ O ₃ S 239·2	88 188—191	45·18 45·34	3·79 3·78	17·56 17·14	
IIIf	$C_{10}H_{12}N_2O_2S_{224\cdot 2}$	95 189—192	53·55 53·59	5·39 5·45	12·49 12·52	
IIIg	C ₉ H ₉ CIN ₂ OS 228·7	87 190—193	47·26 47·19	3∙96 4∙00	12·2: 12·24	
IIIh ^a	$C_9H_8Cl_2N_2OS$ $263 \cdot 1$	80 218-200	41·08 41·34	3·06 2·97	10∙6: 10∙61	
III i	$C_{11}H_{12}N_2O_2S_{236\cdot 2}$	72 230–233	55·91 54·53	5·12 5·01	11·86 11·40	
IIIj ^b	$C_{10}H_{10}N_2O_2S_{222\cdot 2}$	77 135—138	54·04 53·24	4·53 4·51	12·60 12·61	
IIIk	$C_{11}H_{15}N_3OS$ 237.3	83 127—128	55·67 55·33	6·37 6·17	17·71 18·62	
IIII	$C_{12}H_{12}N_2O_2S_{248\cdot 3}$	88 173 - 175	58·08 57·98	4·87 4·72	11·28 10·50	
IIIm	C ₁₄ H ₁₄ N ₂ OS 258·3	86 148—150	65·08 65·12	5·45 5·50	10·85 10·91	

TABLE I

Characteristic data for N-aryl-N'-acetylthioureas IIIc-IIIm

^{*a*} Mass spectrum, m/z (%): 229 (31), 227 (83), 205 (18), 203 (29), 187 (30), 185 (79), 163 (60), 161 (29), 43 (100); ^{*b*} mass spectrum, m/z (%): 222 (26), 105 (100), 86 (60), 77 (39), 59 (31), 30 (63).

N-Aryl-N'-acetylthioureas IIIa-IIIm

Aryl isothiocyanate Ia - Im (10 mmol) was added to N,O-bis(trimethylsilyl)acetamide (2.03 g, 10 mmol) under exclusion of air moisture at 70-80°C during 1 h. The mixture was left to stand for 24 h, a little amount of methanol was added (c. 10 ml) and the separated crystals were filtered off and recrystallized from ethanol. Yields and characteristic data are given in Table I, the spectral values are listed in Table II.

TABLE II

Com-	Com-) ^a	1	H NMR (ppr		
pound v	v(NH)	v(C==0)	v(NHCS)	CH ₃	H _{ar}	NH	- Other protons
IIIa		1 680	1 520	2.2	7·25—7·68	9·83 12·4	
IIIb	3 405	1 680	1 505	2.5	7.28-7.98	11.58	
IIIc		1 670	1 540	2.18	7.08-7.65	9·23 12·33	
IIId	3 405	1 680	1 535	2.48	7.7-7.98	11.75	
IIIe	3 360	1 675	1 537	2.53	8.25-8.58	11·83 13·2	
IIIf		1 680	1 520	2.43	7.13-7.8	11.63	4·05 s, 3 H (CH ₃ O)
IIIg	3 425	1 670	1 580	2.15	7.05-7.5	9∙05 9∙4	
IIIh	3 400	1 685	1 570	2.48	7.5-8.55	11·93 12·93	
IIIi		1 665 1 590	1 530	2.33	7.95-8.23	11.78	2·73 s, 3 H (CH ₃ CO)
IIIj	3 390	1 690	1 534	2.33	7.48-8	10·53 12·5	
IIIk	3 405	1 680	1 541	2.18	6.55-7.35	9·73 12·35	2·95 s, 6 H (CH ₃)
IIII		1 640	1 539	2.45			
IIIm	3 410	1 680	1 544	2.05	7.38-8.05	9·65 10·85	5·25 d, 2 H (CH ₂)

Spectral data of N-aryl-N'-acetylthioureas IIIa-IIIm

^a Compounds IIIa, IIId, IIIf, IIIi, IIII were measured in KBr, IIIb, IIIc, IIIg, IIIh, IIIj, IIIk, IIIm in CHCl₃; ^b compounds IIIa, IIIc, IIIg, IIIj, IIIk, IIIm were measured in CDCl₃, IIIi, IIIi in $(CD_3)_2SO$, IIId, IIIf, IIIh in CDCl₃- $(CD_3)_2SO$ (1 : 1), IIIb in CDCl₃- $(CD_3)_2SO$ (3 : 1), IIIe in CDCl₃- $(CD_3)_2SO$ (5 : 1).

Reactions of Isothiocyanates and Isocyanates

TABLE III

Com-	Formula	Yield, %	Calculated/Found		
pound	M.w.	М.р., °С	% C	% Н	% N
Va	$C_9H_{10}N_2O_2$	99	60·67	5.66	15.12
1724		172-174	60·69	5.26	13.17
. VO	$C_9H_9CIN_2O_2$ 212.6	96 238—240	50·84 50·74	4·27 4·19	13.17
Vc	$C_9H_9BrN_2O_2$	97	42·05	3.53	10.90
	257.0	213-215	42.12	3.41	10.89
Vd ^b	$C_{10}H_{12}N_2O_3$	98	57.69	5.81	13.45
	208.2	217-220	57.60	5.83	13.43
Ve	$C_{12}H_{14}N_2O_2$	89	66.04	6.47	12.84
	218.2	17-178	66•07	6.49	12.81

Characteristic data for N-aryl-N'-acetylureas Va-Ve

^{*a*} Mass spectrum, m/z (rel. int., %): 214 (7), 212 (22), 155 (34), 153 (100), 129 (8), 127 (30), 125 (11), 99 (7), 90 (8), 63 (7), 43 (50); ^{*b*} mass spectrum, m/z (rel. int., %): 208 (19), 149 (100), 134 (27), 123 (5), 122 (6), 108 (29), 106 (7), 78 (6), 52 (6), 43 (24).

	IR (ci	$(m^{-1})^{a}$	1	H NMR (ppm,		
Compound	v(NH)	v(CO)	CH ₃	H _{ar}	NH	Other protons
Va	3 410	1 675	2.4	7.25 - 7.80		
Vb	3 385	1 680	2.3	7.50-7.83	10·78 10·93	
Vc		1 665	2.4	7.40-8.05	10.88	
Vd		1 675	2.28	7.057.76	10·58 10·80	3·93 s, 3 H (OCH ₃)
Ve	3 420	1 700	2.53	7.63-7.70	10·65 10·78	2·3 s, 3 H (CH ₃ CO) 6·05 s, 1 H (CH)

TABLE IV Spectral data of N-aryl-N'-acetylureas Va - Ve

^a Compounds Va - Vd were measured in KBr, Ve in CHCl₃; ^b compounds Va, Vc, Ve were measured in CDCl₃-(CD₃)₂SO (1:1), Vb, Vd in (CD₃)₂SO.

N-Aryl-N'-acetylureas Va - Vm

N,O-Bis(trimethylsilyl)acetamide (2.03 g, 10 mmol) was added to aryl isocyanate (10 mmol) at an ambient temperature. The exothermic reaction rose the temperature to $35-40^{\circ}$ C which was maintained for 2 h. Methanol (5 ml) was then added to the cooled (0°C) mixture and the

TABLE V

TABLE VI

Characteristic data for 1-(arylaminocarbonyl)imidazoles VIIa-VIIe

Com-	Formula	Yield, %	Cal	Calculated/Found			
pound	M.w.	M.p., °C	% C	% Н	% N		
VIIa	$C_{10}H_9N_3O$	78.8	64.11	4.84	22.44		
	183.1	237	64·10	4.76	22.48		
VIIb	$C_{10}H_8CIN_3O$	72.3	54·19	3.64	18.96		
	221.6	189	54.14	3.84	18.36		
VIIc	$C_{10}H_8BrN_3O$	50	45·14	3.03	15.79		
	266.0	224	43.04	3.11	15.64		
VIId	$C_{10}H_8N_4O_3$	66.8	51.73	3.47	24.13		
	232.1	255	51.66	3.55	24·29		
VIIe ^c	$C_{11}H_{11}N_{3}O_{2}$	52.5	60·81	5.10	19.34		
	217.2	211	60.79	5.19	19.46		

^a Mass spectrum, m/z (rel. int., %): 149 (100), 143 (50), 121 (8), 106 (49), 80 (8), 78 (29), 68 (84).

Com-		$IR (cm^{-1})^a$			¹ H NMR (ppm, δ) ^b			
pound	v(NH)	ν(C==N)	v(C ==0)	H _{im} (2 H)	$H_{ar} + H_{im}(1 H)$	NH	Other protons	
VIIa	3 370	1 675	1 720	7.25	7.61-7.88	_		
VIIb	3 340	1 680	1715	7.25	7.63-7.83	9.50		
VIIc	3 380	1 680	1 710	7.25	7.55 - 8.00	8.75		
VIId	3 365	1 670	1 720	7.23	7.88-8.93			
VIIe	3 374	1 700	1 750	7.25	7.03-7.63	8.63	3·93 s, 3 H (CH ₃ O)	

^{*a*} Compound *VIIa* was measured in CHCl₃, compounds *VIIb*-*VIIe* in KBr; ^{*b*} compound *VII_a* was measured in CDCl₃, compounds *VIIb*-*VIIe* in $(CD_3)_2SO$.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

692

separated crystals were filtered off and recrystallized from ethanol. Yields and characteristic data are presented in Table III, spectral data are seen in Table IV.

TABLE VII

Characteristic data for 1-(arylaminocarbonyl)morpholines Xa, Xb; 1-(arylaminocarbonyl)piperidines XIa, XIb and 1-(arylaminothiocarbonyl)morpholine XII

	Com-	Com- Formula		Calculated/Found			
pound	M. w.	M.p., °C	% C	%Н	% N		
;	Xa	C ₁₁ H ₁₄ N ₂ O ₂ 206·2		64·06 63·55	6·85 6·95	13·58 13·69	
	Xb	C ₁₁ H ₁₃ ClN ₂ O ₂ 240.6	96 199—202	54·89 54·96	5·44 5·56	11∙64 11∙72	
	XIa	C ₁₂ H ₁₆ N ₂ O 204·2	97 125—127	70∙58 69∙07	7·90 7·56	13·71 13·89	
	XIb	C ₁₂ H ₁₅ ClN ₂ O 238·7	91 142—144	60·38 59·48	6·33 6·48	11·73 11·28	
	XII	$\begin{array}{c} C_{11}H_{14}N_2OS\\222\cdot 3\end{array}$	97 127 — 128	59·43 59·41	6·35 6·50	12·60 12·92	

TABLE VIII

Spectral data of 1-(arylaminocarbonyl)morpholines Xa, Xb, 1-arylaminocarbonyl)piperidines XIa, XIb and 1-(arylaminothiocarbonyl)morpholine XII

Compound	$IR (cm^{-1})^a$		¹ H NMR (ppm, δ) ^b			
	۷(NH)	v(C ≕O)	Harom	NH	Other protons	
Xa	3 340	1 640	7·28-7·83	8 ∙58	3·80-3·88 m, 8 H (CH ₂)	
Xb	3 345	1 635	7.40-7.83	8.83	3·73-3·85 m, 8 H (CH ₂)	
XIa	3 335	1 635	6·95—7·48	6.30	1.83 - 2.00 m, 6 H (CH ₂) 3.33 - 3.50 m, 4 H (NCH ₂)	
XIb	3 365	1 645	7·45—7·88	9·98	2·00-2·18 m, 6 H (CH ₂) 3·45-3·68 m, 4 H (NCH ₂)	
XII	3 385	с	7.43-7.70	9.55	4·03-4·28 m, 8 H (CH ₂)	

^a Measured in KBr; ^b compounds Xa, Xb were measured in $CDCl_3-(CD_3)_2SO(1:1.5)$, XIb in (1:1), XII in (2:1) and XIa in $CDCl_3$; ^c v(NHCS) 1 590 cm⁻¹.

1-(N-Arylaminocarbonyl)imidazoles VIIa-VIIe

N-Trimethylsilylimidazole (1.40 g, 10 mmol) was added to aryl isocyanate (10 mmol) under exclusion of air moisture. Due to exothermic reaction the temperature rose to $35-40^{\circ}$ C at which it was kept for 2 h. The mixture was cooled to 0° C, methanol was added and the separated crystals were filtered off. Yields and characteristic data are listed in Table V, spectral data are presented in Table VI.

1-(Arylaminocarbonyl)morpholines Xa, Xb; 1-(Arylaminocarbonyl)piperidines XIa, XIb and 1-(Phenylaminothiocarbonyl)morpholine (XII)

Applying the same procedure, starting from isocyanate or isothiocyanate (10 mmol) and N-trimethylsilylmorpholine⁷ (1.59 g, 10 mmol) or N-trimethylsilylpiperidine (1.57 g, 10 mmol) at a temperature range from $45-50^{\circ}$ C and 1 h reaction time the title products were prepared in yields listed in Table VII together with their analytical data. Spectral values are given in Table VIII.

REFERENCES

- 1. Drobnica L., Kristián P., Augustin J. in: *The Chemistry of Cyanates and their Thio Derivates* (S. Patai, Ed.), p. 1007. Wiley, New York 1977.
- 2. Helmers O.: Ber. Dtsch. Chem. Ges. 20, 786 (1887).
- 3. Wheeler H. L., Meriam H. F.: J. Am. Chem. Soc. 23, 283 (1901).
- 4. Itoh K., Kato N., Sakai S., Ishii Y.: J. Chem. Soc., C 1969, 2005.
- 5. Itoh K., Lee I. K., Matsuda I., Sakai S., Ishii Y.: Tetrahedron Lett. 1967, 2667.
- 6. Fink W.: Chem. Ber. 97, 1433 (1964).

Translated by Z. Votický.